• Shaanxi CHENGDA Industry Furnace MAKE Co., Ltd.
    سید راشد احمد بُت
    شركت صنعتي فرن شانشي چنگدا، توليدات فرن قوس الکتريکي را به پايان رسيدند، کارگران با مهندسان چنگدا با دقت همکاری کردند تا تجهیزات را بياموزند و از آن استفاده کنند،نشان دهنده دوستی عمیق و همکاری عالی بین مردم چین و پاکستان.
  • Shaanxi CHENGDA Industry Furnace MAKE Co., Ltd.
    ابوباکار
    بعد از بیش از یک ماه تولید و عیب یابی،2 مجموعه تجهیزات اتاق رسوب گازهای دخانی تبادل حرارتی با موفقیت به کار گرفته شده است ~ تمام پرسنل درگیر در پروژه سخت کار کرده اند!
  • Shaanxi CHENGDA Industry Furnace MAKE Co., Ltd.
    جي-وهان
    به شما تبریک میگم شرکت تولید کوره صنعتی شانسی چنگدا در کره جنوبینصب تجهیزات کوره ذوب فلزات گرانبها و تولید دقیق و راه اندازی دقیق، منتظر آینده در زمینه های بیشتری برای دستیابی به همکاری سودمند متقابل!
تماس با شخص : Du
شماره تلفن :  13991381852

Six-electrode large DC submerged arc furnace with World's leading technology/invention patents

محل منبع چین
نام تجاری Shaanxi Chengda
گواهی ISO 9001
شماره مدل براساس ظرفیت پردازش تجهیزات مذاکره کنید
مقدار حداقل تعداد سفارش 1 واحد
قیمت The price will be negotiated based on the technical requirements and supply scope of Party A
جزئیات بسته بندی با توجه به الزامات خاص حزب A بحث کنید
زمان تحویل 2 ماه
شرایط پرداخت L/C، T/T، وسترن یونیون
قابلیت ارائه زنجیره تأمین کامل تولید ، عرضه به موقع و مطابق با استانداردهای کیفیت

برای نمونه ها و کوپن های رایگان با من تماس بگیرید.

واتساپ:0086 18588475571

وی چت: 0086 18588475571

اسکایپ: sales10@aixton.com

اگر شما هر گونه نگرانی دارید، ما 24 ساعت کمک آنلاین ارائه می دهیم.

x
جزئیات محصول
برجسته کردن

six-electrode DC submerged arc furnace,large steelmaking arc furnace,submerged arc furnace with patents

,

large steelmaking arc furnace

,

submerged arc furnace with patents

پیام بگذارید
توضیحات محصول

Six-Electrode Large DC Submerged Arc Furnace


The six-electrode large DC submerged arc furnace is a high-efficiency, large-capacity metallurgical smelting device optimized for large-scale ferroalloy, industrial silicon, and calcium carbide production. Building on the advantages of four-electrode furnaces, it adopts a hexagonal electrode layout to achieve more uniform current distribution, stronger electromagnetic stirring, and higher smelting efficiency, making it ideal for ultra-large-scale smelting projects (rated power ≥80MVA).

1. Basic Structure & Working Principle


Core Components


System Key Components & Specifications
Electrode System 6 graphite/self-baking electrodes arranged in a regular hexagon; diameter 1000–1400mm; independent lifting & current adjustment mechanism for each electrode
Power Supply System Thyristor rectifier transformer (split-type design: 2–3 rectifier cabinets in parallel); DC reactor; short-net with low-resistance copper busbar; rated power 80–150MVA
Furnace Body Structure Steel shell + multi-layer refractory lining (corundum-magnesia brick + carbon ramming mass); conductive furnace bottom anode (graphite-carbon brick + copper conductive layer) to bear high current density (≤5A/cm²); furnace capacity 150–500t
Auxiliary Systems High-flow cooling water system; PLC + DCS intelligent control system; closed-loop dust removal system; automatic quantitative feeding system

Working Principle


DC current is output from the rectifier system and distributed to the 6 top electrodes (cathodes). The arc is ignited between the electrodes and the charge, and the current flows through the submerged arc and molten pool to the conductive furnace bottom anode, forming a stable main circuit. The hexagonal electrode layout creates a symmetric electromagnetic field, driving the molten pool to perform high-intensity circular stirring. This accelerates the reduction reaction of ores and ensures uniform temperature and composition of the melt.

2. Key Technical Parameters (Typical Ultra-Large Models: 80–150MVA)


Parameter Index Specification Range
Rated Power 80–150MVA
Total Rated DC Current 60–125kA (10–21kA per electrode, independently adjustable)
DC Input Voltage 1000–1500V
Single Electrode Diameter 1000–1400mm
Furnace Nominal Capacity 150–500t (batch smelting for ferroalloy)
Smelting Temperature 1900–2300℃
Power Consumption 3600–4500kWh/t (industrial silicon); 2800–3500kWh/t (high-carbon ferrochrome)
Electrode Consumption 0.4–0.8kg/t (20% lower than four-electrode DC furnaces)
Cooling Water System Total flow rate 800–1500m³/h; water pressure 0.45–0.65MPa; conductivity ≤50μS/cm
Dust Removal Efficiency ≥99.8%; emission concentration ≤5mg/m³
Electromagnetic Stirring Intensity 1.2–1.8T (magnetic induction intensity)
Lining Service Life 3–5 years (for ferroalloy smelting)

3. Core Advantages vs. Four-Electrode DC Submerged Arc Furnaces


Advantage Detailed Description
Uniform Current & Temperature Distribution Hexagonal electrode layout eliminates local hot spots in the molten pool; temperature difference within the furnace ≤50℃, ensuring consistent product composition
Higher Power Density & Smelting Efficiency Supports ultra-high power input (up to 150MVA); smelting cycle shortened by 15–20% compared to four-electrode furnaces; hourly output increased by 20–30%
Lower Energy & Electrode Consumption Symmetric electromagnetic field reduces arc energy loss; power consumption reduced by 8–12%; independent electrode current control avoids over-burning of single electrodes, cutting consumption by 20%
Stronger System Stability Split-type power supply design: if one rectifier cabinet fails, the others can continue operating (load rate ≥60%); low voltage fluctuation (≤±5%), friendly to the power grid
Better Scalability Modular electrode and power supply design allows step-by-step capacity expansion (e.g., upgrading from 80MVA to 150MVA without replacing the furnace body)

4. Application Scenarios


  1. Ultra-Large Ferroalloy Production

    Smelting high-carbon ferrochrome, ferrosilicon, silicomanganese, and ferrotungsten; suitable for projects with annual output ≥100,000 tons.
  2. High-Purity Industrial Silicon Smelting

    Produces silicon with purity ≥99.9% for semiconductor and photovoltaic industries; stable temperature field reduces impurity content.
  3. Large-Scale Calcium Carbide Manufacturing

    Single-furnace calcium carbide output ≥200t/batch; carbide content ≥85%; energy consumption reduced by 10–15% compared to traditional furnaces.
  4. Rare Metal Ore Smelting

    Reduction smelting of nickel-cobalt ore, tantalum-niobium ore, and vanadium-titanium magnetite; high alloy element recovery rate (≥97%).

5. Operation Key Points & Maintenance


Operation Precautions


  1. Electrode Insertion Depth Control: Maintain 1.5–2.0m insertion depth per electrode to ensure submerged arc burning; avoid arc exposure (causes energy loss and dust emission).
  2. Current Balance Adjustment: Keep the current difference between electrodes ≤5% via the DCS system; prevent overload of individual electrodes.
  3. Slag System Optimization: Adopt high-basicity slag (R=2.0–2.5) to improve desulfurization rate (≥90%) and reduce lining erosion.

Maintenance Focus


  1. Electrode Maintenance: Regularly check electrode joints for tightness; replace electrodes when the residual length is ≤500mm to avoid breakage.
  2. Furnace Bottom Anode Inspection: Test the conductivity of the furnace bottom every 3 months; repair carbon ramming mass in time if cracks are found.
  3. Cooling System Monitoring: Real-time monitor water flow and temperature difference of electrodes and furnace body; shut down immediately if water flow is insufficient to prevent burnout.

6. Technical Comparison with Four-Electrode DC Submerged Arc Furnaces


Feature Six-Electrode Large DC Submerged Arc Furnace Four-Electrode DC Submerged Arc Furnace
Electrode Layout Regular hexagon (symmetric) Square (asymmetric local current)
Max Rated Power 150MVA 63MVA
Temperature Uniformity ≤50℃ difference 80–120℃ difference
Power Consumption 3600–4500kWh/t 3800–4800kWh/t
Hourly Output 20–30% higher Standard output
Retrofit Cost High (new furnace body required) Medium (retrofit from AC furnaces feasible)
Applicable Scale Ultra-large (≥100,000t/year) Medium-large (30,000–100,000t/year)

7. Development Trends


  1. Intelligent Smelting: Integrate AI and IoT technologies to realize automatic adjustment of electrode current, feeding speed, and slag discharge; achieve unmanned on-site operation.
  2. Energy Recycling: Combine waste heat power generation systems to recover flue gas heat (temperature ≥1200℃), reducing overall energy consumption by 20–25%.
  3. Green Smelting: Adopt closed-loop furnace body design + dry dust removal to achieve zero wastewater discharge and ultra-low emission of pollutants.